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Abstract: This paper is concerned with fuzzy cellular neural networks with distributed delays. Sufficient condi-
tions on the existence, uniqueness and global exponential stability of equilibrium point are established by using
the Homeomorphism theory and applying elementary inequality 2ab ≤ a2 + b2. Moreover an example is given to
illustrate results obtained.
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1 Introduction

Since cellular neural networks(CNNs) was first intro-
duced by Chua and Yang in 1998 [1, 2]. The dynam-
ical behaviors of CNNs and CNNs with delays (DC-
NNs) have received much attention due to their poten-
tial applications in associated memory, parallel com-
puting , pattern recognition, signal processing and op-
timization problems(see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16]).The existence of equilibrium point and
global stability are one of the most important fields in-
vestigated by some researchers. When a neural circuit
is employed as associated memory, the existence of
many equilibrium points is a necessary feature . How-
ever, in application to solve optimization problem-
s , the networks must possess a unique and globally
asymptotically stable (GAS) or globally exponential
stable(GES) equilibrium point for every input vector.
Based on traditional CNNs, Yang and Yang [17, 18]
proposed another type-fuzzy cellular neural networks
(FCNNs), which integrates fuzzy logic into the struc-
ture of cellular neural networks . Unlike CNNs struc-
ture, FCNNs has fuzzy logic between its template in-
put and/or output besides the sum of product opera-
tions. Studies have shown that FCNNs has its po-
tential in image processing and pattern recognition.
Like the traditional CNNs, the stability of the system
is very important in the design of the FCNNs. In re-
cent years some results on stability for FCNNs have
been derived(see [17, 18, 19, 20, 21, 22, 23, 24, 25]).
To the best of our knowledge. FCNNs with delays
are seldom considered. Authors in reference([21, 22])

gave some conditions to guarantee the globally stabil-
ity of FCNNs with constant delays and time-varying
delays. In formulating the network model, the time
delay is assumed to be discrete. This assumption is
reasonable. However a more satisfactory hypothesis is
that the time delays are continuously distributed over
a certain duration of time such that the distant past
has less influence compared to the recent behavior of
the state. Author in [19] considered FCNNs with fi-
nite distributed delays and found some sufficient con-
ditions to ensure the existence and global exponential
stability of equilibrium point. Based on these consid-
erations above, in this paper we consider the following
FCNNs with infinite distributed delays.

ẋi(t) = −dixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=i

bijuj

+
n∧

j=1

αijgj

(∫ ∞

0
kij(s)xj(t− s)ds

)

+
n∨

j=1

βijgj

(∫ ∞

0
kij(s)xj(t− s)ds

)

+
n∧

j=1

Tijuj +
n∨

j=1

Hijuj + Ii (1)

i = 1, 2, · · · , n, where di > 0 represents the pas-
sive decay rates to the state of ith unit at time t.
αij , βij , Tij and Hij are elements of fuzzy feedback
MIN template and fuzzy feedback MAX template,
fuzzy feed forward MIN template and fuzzy feed for-
ward MAX template, respectively. aij and bij are el-
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ements of feedback template and feed forward tem-
plate.

∧
and

∨
denote the fuzzy AND and fuzzy OR

operation, respectively. xi, uj and Ii denote state, in-
put and bias of the ith neurons, respectively. fj(·) and
gj(·) are the activation functions. kij denote delay k-
ernels.

Suppose that system (1) has an initial condition
with xi(t) = ϕi(t)(i = 1, 2 · · · , n), t ≥ 0. De-
note a continuous solution of system (1.1) with ini-
tial condition by x(t, 0, ϕ). For convenience denote
solution by x(t) if no confusion should occur, where
x(t) = (x1(t), x2(t), . . . , xn(t))

T (T denote trans-
pose). For x ∈ Rn, we define the vector norm ∥x∥ =

(
∑n

i=i | xi |2)
1
2 . For any ϕ = (ϕ1, ϕ2, . . . , ϕn)

T ∈ C
(where C = C([−τ, 0], Rn)), we define a norm in C

by ∥ϕ∥ =
[∑n

i=1

(
sup−∞≤s≤0 |ϕi(s)|2

)] 1
2

Definition 1 The equilibrium point x∗ =
(x∗1, x

∗
2, . . . , x

∗
n)

T of system (1.1) is said to be
GES, if there are constants λ > 0 and M ≥ 1 such
that, for any t ≥ 0

∥x(t)− x∗∥ ≤ M∥ϕ− x∗∥e−λt.

Definition 2 If f(t) : R → R is a continuous func-
tion, then the upper right derivative of f is defined as

D+f(t) = lim
l→0+

sup
1

l
(f(t+ l)− f(t)).

Definition 3 [11]. A map H : Rn → Rn is a home-
omorphism of Rn onto itself if H is continuous and
one-to-one and its inverse map H−1 is also continu-
ous.

Lemma 4 [11]. Let H : Rn → Rn be continuous. If
H satisfies the following conditions
(1) H(x) is injective on Rn

(2) ∥H(x)∥ → ∞ as ∥x∥ → ∞
Then H is homeomorphism.

Lemma 5 [17]. Suppose x and y are two states of
system (1), then we have∣∣∣∣∣∣

n∧
j=1

αijgj(xj) −
n∧

j=1

αijgj(yj)

∣∣∣∣∣∣
≤

n∑
j=1

|αij ||gj(xj)− gj(yj)|,(2)

and∣∣∣∣∣∣
n∨

j=1

βijgj(xj) −
n∨

j=1

βijgj(yj)

∣∣∣∣∣∣
≤

n∑
j=1

|βij ||gj(xj)− gj(yj)|.(3)

To obtain our results, we make the following assump-
tions.
(A1) fj(·) and gj(·)(j = 1, 2, . . . , n) are globally
Lipschitz continuous, i. e., there exist positive con-
stant µj and σj such that

|fj(x)−fj(y)| ≤ µj |x−y|, |gj(x)−gj(y)| ≤ σj |x−y|,
(4)

and fj(0) = gj(0) = 0 for any x, y ∈ R and j =
1, 2, . . . , n.
(A2) The delay kernels kij : [0,∞] → [0,∞] are
continuous functions and they are assumed to satisfy∫ ∞

0
kij(s)ds = 1,

∫ ∞

0
kij(s)e

λsds < ∞. (5)

where λ > 0.
When the activation functions are bounded, the

existence of an equilibrium point of a neural net-
work can be guaranteed by the use of the Brouwer’s
fixed point theorem. This, however, is not the case
if the functions are unbounded and it could happen
that there are no equilibrium points. Thus it becomes
the main objective of this paper. In Section 2, we will
give the existence and uniqueness of equilibrium point
for fuzzy cellular neural networks. Results for global
exponential stability of fuzzy cellular neural network-
s with distributed delays will be given and proved in
Section 3. An illustrative example will be given to
show effectiveness of our results in Section 4. Con-
clusion will be given in Section 5.

2 Existence and uniqueness of equi-
librium point

In this section, we will discuss the existence and u-
niqueness of equilibrium point for fuzzy cellular neu-
ral networks (1).

Firstly, we study the existence and uniqueness of
the equilibrium point, considering the following equa-
tion associated with system(1)

−dixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=i

bijuj

+
n∧

j=1

αijgj(xj(t)) +
n∨

j=1

βijgj(xj(t))
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+
n∧

j=1

Tijuj +
n∨

j=1

Hijuj + Ii = 0.

Define the map H as follows

H(x) = (h1(x1), h2(x2), . . . , hn(xn))
T , (6)

in which

hi(xi) = −dixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=i

bijuj

+
n∧

j=1

αijgj(xj(t)) +
n∨

j=1

βijgj(xj(t))

+
n∧

j=1

Tijuj +
n∨

j=1

Hijuj + Ii (7)

Theorem 6 Assume that (A1) and (A2) hold, Sup-
pose there exist real numbers δi > 0, (i = 1, 2, . . . , n)
such that

di >
1

2

n∑
j=1

|aij |µj +
1

2

n∑
j=1

(|αij + |βij |)σj

+
1

2

n∑
j=1

δj
δi
|aji|µi

+
1

2

n∑
j=1

δj
δi
(|αji|+ |βji|)σi (8)

then system (1) has a unique equilibrium point x∗

Proof:We define map H as (6) and (7), we only need
to show that H satisfies two conditions of Lemma 1.

Firstly, we will show that If x ̸= x then H(x) ̸=
H(x) holds for any x, x ∈ Rn. Suppose, by contra-
diction, that map H is not injective on Rn. In other
words, there exist x ̸= x such that H(x) = H(x); i.
e., for i = 1, 2, . . . , n.

hi(xi) − hi(xi)

= −di(xi − xi) +
n∑

j=1

aij(fj(xj))− fj(xj))

+
n∧

j=1

αijgj(xj)−
n∧

j=1

αijgj(xj)

+
n∨

j=1

βijgj(xj)−
n∨

j=1

βijgj(xj)

= 0 (9)

Applying assumption (A1) and Lemma 5, we obtain

di|xi − xi| ≤
n∑

j=1

aij |fj(xj)− f(xj)|

+

∣∣∣∣∣∣
n∧

j=1

αijgj(xj)−
n∧

j=1

αijgj(xj)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∨

j=1

βijgj(xj)−
n∨

j=1

βijgj(xj)

∣∣∣∣∣∣
≤

n∑
j=1

|aij |µj |xj − xj |

+
n∑

j=1

(|αij + βij |)σj |xj − xj |

and from which we get

2
∑n

i=1 δidi|xi − xi|2

≤
n∑

i=1

δi

 n∑
j=1

|aij |µj2|xi − xi||xj − xj |

+
n∑

j=1

(|αij |+ |βij |)σj2|xi − xi||xj − xj |


where δi > 0. Using elementary inequality 2ab ≤
a2 + b2 in the above, it follows that

2
∑n

i=1 δidi|xi − xi|2

≤
n∑

i=1

δi


n∑

j=1

|aij |µj |xi − xi|2

+
n∑

j=1

|aij |µj |xj − xj |2

+
n∑

j=1

(|αij |+ |βij |)σj |xi − xi|2

+
n∑

j=1

(|αij |+ |βij |)σj |xj − xj |2


=
n∑

i=1

δi


n∑

j=1

|aij |µj |xi − xi|2

+
n∑

j=1

δj
δi
|aji|µi|xi − xi|2

+
n∑

j=1

(|αij |+ |βij |)σj |xi − xi|2

+
n∑

j=1

δj
δi
(|αji|+ |βji|)σi|xi − xi|2


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which in turn gives

2
∑n

i=1 δi

di −
1

2

n∑
j=1

|aij |µj

−1

2

n∑
j=1

δj
δi
|aji|µi

−1

2

n∑
j=1

(|αij |+ |βij |)σj

−1

2

n∑
j=1

δj
δi
(|αji|+ |βji|)σi

 |xi − xi|2

≤ 0

By applying (8) to the above we can lead to the equal-
ity xi = xi, for each i = 1, 2, . . . , n implying that
x = x. This contradicts our choice of x ̸= x. Hence
the map H is injective on Rn. Now we only need to
show that ∥H(x)∥ → ∞ as ∥x∥ → ∞. for sake of
convenience.
Set

H∗(x) = (h∗1(x1), h
∗
2(x2), . . . , h

∗
n(xn))

T

where

h∗i (xi) = −dixi +
n∑

j=1

aij(fj(xj)− fj(0))

+
n∧

j=1

αijgj(xj)−
n∧

j=1

αijgj(0)

+
n∨

j=1

βijgj(xj)−
n∨

j=1

βijgj(0) (10)

We consider

∑n
i=1 δi|xi|sgn(xi)h∗i (xi) =

n∑
i=1

δi|xi|sgn(xi)

×

−dixi +
n∑

j=1

aij(fj(xj)− fj(0))

+
n∧

j=1

αijgj(xj)−
n∧

j=1

αijgj(0)

+
n∨

j=1

βijgj(xj)−
n∨

j=1

βijgj(0)


≤

n∑
i=1

δi

−di|xi|2 +
1

2

n∑
j=1

µj |aij |2|xi||xj |

+
1

2

n∑
j=1

σj(|αij |+ |βij |)2|xi||xj |



≤
n∑

i=1

δi

−di|xi|2 +
1

2

n∑
j=1

µj |aij ||xi|2

+
1

2

n∑
j=1

µj |aij ||xj |2

+
1

2

n∑
j=1

σj(|αij |+ |βij |)|xi|2

+
1

2

n∑
j=1

σj(|αij |+ |βij |)|xj |2


=
n∑

i=1

δi

−di +
1

2

n∑
j=1

µj |aij |

+
1

2

n∑
j=1

δj
δi
|aji|µi +

1

2

n∑
j=1

σj(|αij |+ |βij |)

+
1

2

n∑
j=1

δj
δi
(|αji|+ |βji|)σi

 |xi|2
≤ −η

n∑
i=1

δi|xi|2.

where

η = min
1≤i≤n,1≤j≤n

di −
1

2

n∑
j=1

µj |aij |

−1

2

n∑
j=1

δj
δi
|aji|µi −

1

2

n∑
j=1

σj(|αij |+ |βij |)

−1

2

n∑
j=1

δj
δi
(|αji|+ |βji|)σi

 ≥ 0

Applying Holder’s inequality to the above, we obtain

η min
1≤i≤n

(δi)∥xi∥2

≤ η
n∑

i=1

δi|xi|r ≤
∣∣∣∣∣
n∑

i=1

δisgn(xi)h∗i (xi)|xi|
∣∣∣∣∣

≤ max
1≤i≤n

(δi)

(
n∑

i=1

|h∗i (xi)|2
) 1

2
(

n∑
i=1

|xi|2
) 1

2

= max
1≤i≤n

(δi)∥H∗(x)∥∥x∥

Therefore it follows that ∥H∗(x)∥ ≥
η
min1≤i≤n(δi)
max1≤i≤n(δi)

∥x∥. Which directly implies that
∥H∗(x)∥ → ∞ as ∥x∥ → +∞. Hence there
exists a unique equilibrium point x = x∗ such that
H(x∗) = 0. The proof of Theorem 6 is complete. ⊓⊔
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3 Global exponential stability of
fuzzy cellular neural networks

In this section, we will analyze the global exponential
stability of the unique equilibrium point x∗ of system
(1) under sufficient condition (8) .

Let x∗ = (x∗1, x
∗
2, . . . , x

∗
n)

T be the equilibrium
point of system(1.1), we make a transform for system
(1.1): zi(t) = xi(t)− x∗i (i = 1, 2, . . . , n), we have

żi(t) = −dizi(t) +
n∑

j=1

aij
[
fj(zj(t) + x∗j )− fj(x

∗
j )
]

+
n∧

j=1

αijgj

(∫ ∞

0
kij(s)(zj(t− s) + x∗j )ds

)

−
n∧

j=1

αijgj

(∫ ∞

0
kij(s)x

∗
jds

)

+
n∨

j=1

βijgj

(∫ ∞

0
kij(s)(zj(t− s) + x∗j )ds

)

−
n∨

j=1

βijgj

(∫ ∞

0
kij(s)x

∗
jds

)
(11)

where zi(t) = Φi(t),Φi(t) = ϕi(t) − x∗i , i, j =
1, 2, . . . , n. for t ∈ (−∞, 0].

Clearly, the equilibrium point x∗ of system (1) is
GES if and only if the equilibrium point O of system
(11) is GES. In the following, we only study glob-
al exponential stability of the equilibrium point O for
system (11).

Theorem 7 Let the conditions (A1) − (A2) hold, If
(8) is satisfied, then the system (11) has a unique equi-
librium point O of system which is GES.

Proof: The existence and uniqueness of an equilibri-
um point O follow from Theorem 1. Let z(t) denote
an arbitrary solution of system (11). Calculating the
upper right derivative D+|zi(t)| and noting that as-
sumptions (A1)-(A2) above and Lemma 5, we have

D+ |zi(t)| ≤ −di|zi(t)|+
n∑

j=1

|aij |µj |zj(t)|

+
n∑

j=1

(|αij |+ |βij |)σj

×
∫ ∞

0
kij(s)|zj(t− s)|ds (12)

for i = 1, 2, . . . , n; t > 0.
since (8) holds, we can choose a small constant λ > 0
such that

λ − di +
1

2

n∑
j=1

|aij |µj +
1

2

n∑
j=1

δj
δi
|aji|µi

+
1

2

n∑
j=1

(
(|αij + |βij |)

∫ ∞

0
kij(s)e

λsds

)
σj

+
1

2

n∑
j=1

δj
δi

((|αji|+ |βji|)

×
∫ ∞

0
kji(s)e

λsds

)
σi ≤ 0 (13)

Set

wi(t) = eλt|zi(t)| = eλt|xi(t)− x∗i |; t ≥ 0. (14)

for i = 1, 2, · · · , n. Estimating the upper right deriva-
tive D+wi(t) and noting that (12), we have

D+ wi(t) = λeλt|zi(t)|+ eλtD+|zi(t)|
≤ λeλt|zi(t)| − die

λt|zj(t)|

+
n∑

j=1

|aij |µje
λt|zj(t)|+

n∑
j=1

(|αij |+ |βij |)

×σj

∫ ∞

0
kij(s)e

λt|zj(t− s)|ds

and this gives

D+ wi(t) ≤ (λ− di)wi(t) +
n∑

j=1

|aij |µjwj(t)

+
n∑

j=1

(|αij |+ |βij |)σj

×
∫ ∞

0
kij(s)e

λswj(t− s)ds (15)

Now we consider the following Lyapunov functional

V (t) =
n∑

i=1

δi

w2
i (t) +

n∑
j=1

(|αij |+ |βij |)σj

×
∫ ∞

0
kij(s)e

λs
(∫ t

t−s
w2
j (r)dr

)
ds

)
(16)

Calculating the upper right derivative D+V (t) along
the solution of (15), we obtain

D+ V (t)

=
n∑

i=1

δi

2wi(t)D
+wi(t) +

n∑
j=1

(|αij |+ |βij |)σj

×
∫ ∞

0
kij(s)e

λs[w2
j (t)− w2

j (t− s)]ds

)
≤

n∑
i=1

δi
(
2(λ− di)w

2
i (t)

+
n∑

j=1

2|aij |µjwi(t)wj(t)
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+
n∑

j=1

(|αij |+ |βij |)σj

×
∫ ∞

0
2kij(s)e

λswi(t)wj(t− s)ds

+
n∑

j=1

(|αij |+ |βij |)σj

×
∫ ∞

0
kij(s)e

λs[w2
j (t)− w2

j (t− s)]ds

)
≤

n∑
i=1

δi
(
2(λ− di)w

2
i (t)

+
n∑

j=1

|aij |µj [w
2
i (t) + w2

j (t)]

+
n∑

j=1

(|αij |+ |βij |)σj

×
∫ ∞

0
kij(s)e

λs[w2
i (t) + w2

j (t− s)]ds

+
n∑

j=1

(|αij |+ |βij |)σj

×
∫ ∞

0
kij(s)e

λs[w2
j (t)− w2

j (t− s)]ds

)

=
n∑

i=1

δi

2(λ− di)w
2
i (t) +

n∑
j=1

|aij |µjw
2
i (t)

+
n∑

j=1

δj
δi
|aji|µiw

2
i (t) +

n∑
j=1

(|αij |+ |βij |)σj

×
(∫ ∞

0
kij(s)e

λsds

)
w2
i (t)

+
n∑

j=1

δj
δi
(|αji|+ |βji|)σi

×
(∫ ∞

0
kji(s)e

λsds

)
w2
i (t)

)

=
n∑

i=1

2δi

λ− di +
1

2

n∑
j=1

|aij |µj

+
1

2

n∑
j=1

δj
δi
|aji|µi +

1

2

n∑
j=1

(|αij |+ |βij |)σj

×
(∫ ∞

0
kij(s)e

λsds

)
+
1

2

n∑
j=1

δj
δi
(|αji|+ |βji|)σi

×
(∫ ∞

0
kji(s)e

λsds

))
w2
i (t)

Noting (13) that it follows that D+V (t) ≤ 0, for t >
0. This in turn implies V (t) ≤ V (0), for all t > 0.

Furthermore

V (0) =
n∑

i=1

δi

w2
i (0) +

n∑
j=1

(|αij |+ |βij |)σj

×
∫ ∞

0
kij(s)e

λs
(∫ 0

−s
w2
j (r)dr

)
ds

)

=
n∑

i=1

δi

w2
i (0) +

n∑
j=1

δj
δi
(|αji|+ |βji|)σi

×
∫ ∞

0
kji(s)e

λs
(∫ 0

−s
w2
i (r)dr

)
ds

)

≤
n∑

i=1

δi

1 + n∑
j=1

δj
δi
(|αji|+ |βji|)σi

×
∫ ∞

0
kji(s)e

λssds

)(
sup

−∞<s≤0
w2
i (s)

)

Recall that sup−∞<s≤0 |zi(s)|2 < ∞(i =
1, 2, . . . , n), and from assumption (A2) it is clear that
V (0) < ∞. Hence V (t) ≤ V (0) < ∞ for all t > 0.
From (16) we have∑n

j=1 δiw
2
i (t) ≤ V (t)

≤
n∑

i=1

δi + n∑
j=1

δj(|αji|+ |βji|)σi

×
∫ ∞

0
kji(s)e

λssds

)(
sup

−∞<s≤0
w2
i (s)

)

for t > 0. Applying (14) in the above, we obtain∑n
i=1 δie

2λt|xi(t)− x∗i |2

≤
n∑

i=1

δi + n∑
j=1

δj(|αji|+ |βji|)σi

×
∫ ∞

0
kji(s)e

λssds

)(
sup

−∞<s≤0
|xi(s)− x∗i |2

)

Which in turn gives

n∑
i=1

|xi(t)−x∗i |2 ≤ ξe−2λt
n∑

i=1

(
sup

−∞<s≤0
|xi(s)− x∗i |2

)
(17)

for t > 0, where

ξ = max
1≤i≤n,1≤j≤n

δi +
n∑

j=1

δj(|αji|+ |βji|)σi

×
∫ ∞

0
kji(s)e

λssds

}
/ min
1≤i≤n

{δi} ≥ 1
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Hence from (17) and noting that xi(s) =
ϕi(s),−∞ < s ≤ 0, it follows that

∥x(t)− x∗∥ ≤ Me−λt∥ϕ− x∗∥

for t > 0, where M = ξ
1
2 . This means the equilibri-

um point of system (1) is global exponential stability.
The proof of Theorem 7 is complete. ⊓⊔
Remark 1 If we don’t consider fuzzy AND and OR
operation, System (1) becomes traditional cellular
neural networks. It is obvious that the results in [13]
are the corollary of Theorem 7. Therefore the results
of this paper extend the previous known publication.

Remark 2 In this paper, we don’t assume the bound-
edness, monotonicity, and differentiable of activation
functions. Clearly, these functions satisfying assump-
tion (A1) are more general. For example, the Gaus-
sian and inverse Gaussian functions have been used in
the circuit designs and applications of cellular neural
networks.

4 An example
In this section, we give an example to illustrate effec-
tiveness of our results.
Example 4.1 Consider the following fuzzy cellular
neural networks with distributed delays.

dx1
dt = −d1x1(t) +

∑2
j=1 a1jfj(xj(t))

+
∧2

j=1 α1jgj (
∫∞
0 k1j(s)xj(t− s)ds)

+
∨2

j=1 β1jgj (
∫∞
0 k1j(s)xj(t− s)ds)

+
∑2

j=1 b1juj

+
∧2

j=1 T1juj +
∨2

j=1H1juj + I1

dx2
dt = −d2x2(t) +

∑2
j=1 a2jfj(xj(t))

+
∧2

j=1 α2jgj (
∫∞
0 k2j(s)xj(t− s)ds)

+
∨2

j=1 β2jgj (
∫∞
0 k2j(s)xj(t− s)ds)

+
∑2

j=1 b2juj

+
∧2

j=1 T2juj +
∨2

j=1H2juj + I2

(18)

where

D =

(
10 0
0 7

)
, A =

(
1
3 −1

3
1
3

1
3

)
,

B =

(
1
4 −1

4
1
4

1
4

)
, α =

(
1
2 −1

2
1
2

1
2

)
,

β =

(
1
4

1
4

−1
4

1
4

)

fi(xi) = gi(xi) = −|xi|, i = 1, 2, I1 = I2 = 4, u1 =
u2 = 1, kij(t) =

2
π(1+t2)

(i, j = 1, 2) and the matrices
T = (Tij)2×2, H = (Hij)2×2 are identity matrices.
Clearly fi(·), gi(·) are unbounded and Lipschitz con-
tinuous with the Lipschitz constants µi = σi = 1. set
δ1 = 1, δ2 = 2.

By simply calculating, we can easily check that
system (18) satisfy assumptions (A1)-(A2) and (8).
This illustrates the global exponential stability of sys-
tem (18).

5 Conclusion
In this paper employing the elementary inequality
2ab ≤ a2 + b2, constructing a new Lyapunov func-
tional, and applying the Homeomorphism theory, we
have derived a new conditions of the existence, u-
niqueness of the equilibrium point. The fuzzy cellular
neural networks with distributed delays is GES under
these conditions. In contrast with the previous papers,
these conditions are independent of delays. Further-
more, the removal of the bounded-ness condition on
activation functions gives the networks a wider scope
of applicability particularly to optimization problems
which contain unbounded constraints.
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